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Abstract--In the present study a transient inverse geometry heat conduction problem (shape identification 
probiem) is soived using <he Conjugate Gradient Method (CC%i) and Boundary Element Method (BEM)- 
based interse algorithm to estimate the unknown irregular boundary shape. Results obtained by using the 
conjugate gradient method to solve this inverse moving boundary problems are justified based on the 
numerical experiments. It is concluded that the accurate configuration can be estimated by the conjugate 
gradient method except for the initial and final time. The reason and improvement of this singularity are 
addressed. Finally the effects of the measurement errors on the inverse solutions are discussed. 0 1998 

Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

The applications of Inverse Heat Conduction Prob- 
iems (IHCP) can be found in several engineering 
fields, such as the determination of thermal properties 
[l], contact resistance [2], etc. Lesnic ft al. [3] used 
boundary element method to solve one-dimensional 
IHCP in estimating boundary thermal behavior. 
Recently, thermal imaging has become another area 
of active inverse problem research, and much research 
has been devoted to infrared scanners and their appli- 
cations to nondestructive evaluation (NDE) [45]. 
The approaches taken to solve NDE problems are 
based on either the steady or unsteady state response 
of a body subjected to thermal sources. 

In the previous work by Huang and Chao [6!: a 
steady-state shape identification problem has been 
solved successfully by using both the Levenberg-Mar- 
quardt method 1171 and conjugate gradient method [S]. 
They concluded that the Conjugate Gradient Method 
(CGM) is betl;er than the Levenberg-Marquardt 
Method (LMM.) since the former needs very short 
computer time, does not require a very accurate initial 
guess of the boundary shape and needs fewer sensors. 
This similar problem has been solved by Hsieh and 
Kassab [9] and Liu and Zhang [lo]. However the 
techniques they applied are applicable only for the 
steady-state case. 

T1_ -l_:__r:.._ _r rl__ -____-* _*...I_. :_ A^ _..r_-2 *I__ 111G ““,&L’“r “1 LllC p”;sc”L bL”UY Ib L” C.XLt;llll Lilt: 
previous work by Huang and Chao [6] to a transient 
inverse geometry problem in identifying the unknown 
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irregular boundary configurations from external 
measurements (either direct or infrared type), based 
on the boundary element method, i.e. now the bound- 
ary shape is a function of time. This makes the entire 
problem more difficult than the steady-state one since 
the number of unknowns are increased tremendously. 
Therefore the Levenberg-Marquardt method holds 
little promise in solving this kind of identification 
problem because it is applicable for only parameter 
estimation problems but now the inverse transient 
shape identification problem belongs to the function 
estimation problems. For this reason only the con- 
jugate gradient method is applied here. This approach 
can be applied to NDE techniques and other problems 
such as the interface geometry identification for the 
,L”“, “L”..“, ,PI-~--\ ,..,&1.-.-” p,,aar; bWallg= (0&W,,, pI”“I~LIID. 

The use of Boundary Element Method (BEM) is 
suggested by the basic nature of the inverse problem 
(to search an unknown domain, thus an unknown 
surface), because domain discretization is avoided. 
More specifically, the advantage gained by BEM- 
based algorithm is the ability to readily accommodate 
the changes in the unknown boundary shape as it 
evolves from its initial to its final shape. 

The present work addresses the developments of 
the conjugate gradient algorithms for estimating 
unknown boundary shape in transient heat con- 
duction problem. The conjugate gradient method _ - 
derives from the perturbation principles and trans- 
forms the inverse problem to the solution of three 
problems, namely, the direct, sensitivity and the 
adjoint problem. The method will be discussed in 
detail. 
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1708 C.-H. HUANG and C.-C. TSAI 

.Xx: 0 

G, H 
J 
J 

k 
K 
M 
P 

4 

NOMENCLATURE 

boundary shape dependent coefficient 
unknown irregular boundary 
configuration 
geometry and time dependent matrix 
functional defined by equation (6) 
gradient of functional defined by 
equation (15) 
thermal conductivity 
thermal diffusivity 
number of thermocouple 
direction of descent defined by 
equation (7b) 
heat flux density 

l- boundary of the computational 
domain 

a(.) Dirac delta function 
A perturbed value 
AT(x,y, t) sensitivity function defined by 

equation (8) 
c convergence criteria 
i.(x, y, t) Lagrange multiplier defined by 

equation (13) 
0 standard deviation of the 

measurement errors 
random number 

K computational domain. 
T(x, y, t) estimated temperature 
Y(x, 0, t) measured temperature. 

Greek symbols 

B search step size 

Y conjugate coefficient 

Superscripts 
n 

estimated values 
II iteration index 
* fundamental solution. 

2. THE DIRECT PROBLEM 

To illustrate the methodology for developing 
expressions for use in determining an unknown 
boundary geometry in a homogeneous medium with 
thermal diffusivity K, we consider the following two- 
dimensional inverse moving boundary heat con- 
duction problem. For a domain s1, the initial tem- 
npratllrp .-nnalc T_ Whm t , n the hmmrlarv rnn- y-Au..+‘” wy.....” A”. . . .._*. & , “, . ..- ./v”......‘, -.,.- 

ditions at x = 0 and L are assumed both insulated, at 
y = 0, a constant cooling heat flux qo/k is imposed 
while the boundary condition along boundary 
y =f(x, t) is a constant temperature T,. Figure 1 
shows the geometry and the coordinates for the two- 
dimensional physical problem considered here, where 
the triangles A (M = 20) and dots (A4 = 10) denote 
the sensor locations. 

The mathematical formulation of this linear moving 
boundary heat conduction problem is given by : 

?T a2T 1 i?T 
-+T=xt in51, 
dx’ 

t>O (la) 
OY- 

dT 
-=0 atx=O, t>O 
8X 

(lb) 

8T 
%=O atx=L, t>O UC) 

aT 
- = qo/k aty = 0, 
ay 

t > 0 (14 

T= T, aty=,f(x,t), t>O (14 

T= To att=O, inR. (If) 

The boundary integral equation for this transient 
problem without a generation term can be derived as 

Hll f J 

cTdtJ)+K SJ‘ T,*dT dt 
0 r 

=K qT*dl-dt+ 
s 

T”T*dQ (2) 
n 

where K is the thermal diffusivity, t, represents the 
final time and N denotes a point of r or Q. T* is now 
a Green’s function that depends on space and time 
and q* is its normal derivative given as [ 1 l] 

T* = (34 

q* = (3b) 

where r is the distance from N to a point of I-, T = tJ- t 
and d is the distance from a point under consideration 
to the line along the boundary element. 

Let us assume that the initial condition T,, = 0, i.e. 
the domain integral associated with initial conditions 
vanishes, and use N constant elements over space 
domain and J constant elements over time domain. 
Based on these assumptions, the following discretized 
boundary integral equation is obtained 



A transient inverse 2-D geometry problem 1709 

3.00 I 

2.50 
1 

y 1.50 

i 
1.00 insulated 

0.50 

sz 
Insulated 

0.00 2.00 4.00 6.00 6.00 10.00 

X 
Fig. 1. Geometry and coordinates. 

CT,$ i H,T; = i G,JQ,. 
,= 1 ,=I 

Where T = vector of temperature over N boundary 
elements at time j, Q = vector of the heat flux densities 
at time j, H, G = geometry and time dependent 
matrices of dimension (N, N), C = diagonal matrix of 
dimension (N, A?. 

Transferring all unknowns to the left-hand side 
gives 

AX=B (5) 

where X is the vector of unknown T and 4 boundary 
.IC,~IIPP R ;Q fr\,.nA hr, mnlt;l\l.r;nn the ~nrrnmw-.,,A;~,. “UnUI.7. ” 1.9 l”ULlU “J LL’uLL,y’J”‘~ CIIb b”II~Jp”llulll~ 
columns by the known values of Ts or q’s, 

The computer program for this transient moving 
boundary heat conduction problem is modified based 
on the steady-state potential problem given in the 
text book by Brebbia and Dominguez [1 l] and the 
constant boundary elements over space and time are 
adopted for all the examples illustrated here. 

The direct problem considered here is concerned 
with the determination of the medium temperature 
when the moving boundary geometry f(x, t) and the 
boundary conditions at all boundaries are known. 

3. THE INVERSE PROBLEM 

For the inverse problem, the boundary geometry 
along y =f(x, t) is regarded as being unknown, but 
everything else in equation (1) are known. In addition, 

temperature readings taken at some appropriate 
locations and time are considered available. 

Referring to Fig. 1, we assumed that M sensors 
installed along y = 0 are used to record the tem- 
perature information to identify boundary con- 
figuration along y = f(x, t) in the inverse calculations. 
Let the temperature reading taken within these sensors 
be denoted by Y(x,, 0, t) = Y,(t), m = 1 to M, where 
_M ~~nrm=mta the mnnher nf thmmnmmml~c WP nntp r-------- .--- -----.1_- -- I ___._ ----v”r--u. ,, _ -I”I_ 
that the measured temperature Y,,,(f) contains 
measurement errors. Then the inverse problem can be 
stated as follows: by utilizing the above mentioned 
measured temperature data Y,(t), estimate the 
unknown upper boundary shaoe f(x. tl. z _I\ > / 

The solution of the present inverse problem is to be 
obtained in such a way that the following functional 
is minimized : 

” Jlf(x, t)] = 
s 

5 Pm(t) - Ym(O12 dt (6) t=Om=l 
here, T,(t) are the estimated or computed tem- 
peratures at the measurement locations (x,, 0) at time 
t. These quantities are determined from the solution 
of the direct problem given previously be using an 
estimatednx, t) for the exactf(x, t). Here the hat ‘n’ 
denotes estimated quantities. 

4. CONJUGATE GRADIENT METHOD FOR 
MINIMIZATION 

The following iterative process based on the con- 
jugate gradient method [8] can be used for the esti- 
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mation of unknown boundary function f(x, t) by min- and the BEM technique is used to solve this sensitivity 
imizing the functional J[f(x, t)] as : problem. 

f+‘(x, t) =.p(x, t)-pP”(x, t) forn = 0,1,2,. . 

(74 

The functional J(f”“) for iteration n+ 1 is 
obtained by rewriting equation (6) as 

where /Y’ is the search step size in going from iteration 
n to iteration n+ 1, and P”(x, t) is the direction of 
descent (i.e. search direction) given by 

J(Pj”“) = s ,‘Iomi, ITm(.?-p”f’n)- y,A*dt (9a) 

P(x, t) = S”(x, t) +y”P”- ’ (x, t) (7b) 

which is a conjugation of the gradient direction 
.P(x, t) at iteration n and the direction of descent 
P”- ’ (x, t) at iteration n - 1. The conjugate coefficient 
is defined as 

where we replaced %.+I by the expression given by 
equation (7a). If temperature Tx(~~--p”P”) is lin- 
earized by a Taylor expansion, then equation (9a) 
takes the form 

J(j-,‘) = s ,I;, f, [Tnt(.7”) -PATAJ’“) - Y,,l’ df 

‘J L 

ss 
(s”)2 dxdt 

r=0 x=” 
y” = 

‘J L 

5 s 

withy’ = 0. (7~) 

(F’)* dxdt 
,=” x=0 

(9b) 

(7b), the direction of descent P’(x, t) becomes the 
gradient direction, i.e. the ‘Steepest descent’ method 
is obtained. The convergence of the above iterative 
procedure in minimizing the functional J is guaran- 
teed in [ 121. 

where T,(p) is the solution of the direct problem by 
using the estimate p(x, t) for exact f(x, t) at x = x, 
and time t. The sensitivity function AT,(P) is taken as 
the solutions of problem (8) at the measured positions 
x = x, and time t by letting Af = - P. The search 
step size /P is determined by minimizing the functionai 
given by equation (9b) with respect to p. The fol- 
lowing expression is obtained : 

To perform the iterations according to equations 
(lo), we need to compute the step size /P and the 
gradient of the functional .P(x, t). In order to develop 
expressions for the determination of these two quan- 
tities, a ‘sensitivity problem’ and an ‘adjoint problem’ 
are constructed as described below. 

s ,‘I, c, [T,(t)- Y,(f)lATm(t) dt 

p”= 

s 
,‘I, f, WmW21 dt 

. (10) 

4.2. Adjoint problem andgradient equation 
To obtain the adjoint problem, equation (la) is 

multiplied by the Lagrange multiplier (or adjoint 
function) n(x, y, t) and the resulting expression is inte- 
grated over the corresponding space domains. Then 
the result is added to the right hand side of equation 
(6) to yield the following expression for the functional 

JUG, 01 as : 

4.1. Sensitivity problem and search step size 
The sensitivity problem is obtained from the orig- 

inal direct problem defined by equation (1) by 
assuming that when f(x, t) undergoes a variation 
Af(x, t), Tis perturbed by T+AT. Then replacingfin 
the direct problem by f-t Aj’ and T by T+ AT, sub- 
tracting from the resulting expressions the direct prob- 
lem and neglecting the second-order terms, the fol- 
lowing sensitivity problem for the sensitivity function 
AT is obtained. 

a2ATt aZAT CT 

ax* 

inR 
$>1:i’ at 

) t>o (84 

C~AT 
p=O atx=O, t>O 
ax 

g=O atx=L, t>O 

E=O aty=O, 
ay 

t>o 

(8~) 

(84 

AT=AfdT aty=f(x,t), t>O 
ay 

(84 

AT=0 att=O, inn (8f) 

[T- yl*G(x-xm) dxdt 

The variation AJ is obtained by perturbingfby Af 
and T by AT in equation (1 l), subtracting from the 
resulting expression the original equation (11) and 
neglecting the second-order terms. This gives : 

11 L 
AJ= 

ss 
2(T- Y)ATG(x-x,,,)dxdt 

,=O 1 = 0 

+[o[Y;o~;;i[~+~-~]dydxdt 

(12) 

where S(x-xi) is the Dirac delta function and x, 
(m = 1 to M) refers to the measured positions. In 
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equation (12), the triple integral term is integrated 
by parts, the boundary conditions of the sensitivity 
problem given by equations (8b)-(8e) are utilized and 
then AJ is allowed to go to zero. The vanishing of 
the integrands containing AT leads to the following 
adjoint problem for the determination of L(x, Y, t) : 

2 2  ̂

!$+““+g=O inR, t>O 
3Y’ 

(13a) 

d/Z 

fi = 0 atx = 0, t > 0 

fi=O atx=L, t>O 

Wb) 

(13c) 

- = -2(T--Y)~(x--x,) aty = 0 t > 0 
aY 

(13d) 

1:=0 atY=f(x,t), t>O (W 

A=0 att=t,, ina. (13f) 

The adjoint .problem is different from the standard 
initial value problem in that the final time condition 
at time t = t, is specified instead of the customary 
initial condition. However, this problem can be trans- 
formed to an initial value problem by the trans- 
formation of the time variables as r = tJ- t. Then the 
standard techniques of BEM can be used to solve the 
above adjoint problem. 

Finally, the following integral term is left 

From definition [8], the functional increment can 
be presented as 

AJ= ’ 
r s 

L 
J’(x, t)Af(x, t) 2dxdt. (14b) 

*I=0 x=0 

A comparison of equations (14a) and (14b) leads to 
the following expression for the gradient of functional 
J’(x, t) of the functional J[f(x, t)] : 

We note that J’(x, tJ) and J’(x,O) are always 
equal to zero since [31(x, y, tJ)/8y] = 0 and 
[aT(x,,v, O)/dy] = 0. If the initial values off(x, 0) and 
final time values off(x, tJ) can not be predicted before 
the inverse calculation, the estimated values off(x, t) 
will deviate fr’om exact values near both initial and 
final time conditions. This is the case in the present 
study. However, if we let 

~~T(x,Y,O) dT(x,y,At) 
ay = ay (15b) 

a& Y, tJ) 8% y, tJ - At> ------= 
ay at (15c) 

where At denotes the time increment used in the finite 
difference calculation. By applying (15b) and (1%) to 
the gradient equation (Isa), the singularity at t = t,, 
and t, can be avoided in the present study and reliable 
inverse solutions can be obtained. 

4.3. Stopping criterion 
If the problem contains no measurement errors, the 

traditional check condition is specified as 

J[_j”+’ (x, t)] < E (164 

where E is a small specified number. However, the 
observed temperature data may contain measurement 
errors. Therefore, we do not expect the functional 
equation (6) to be equal to zero at the final iteration 
step. Following the experience of the author [8], we 
use the discrepancy principle as the stopping criterion, 
i.e. we assume that the temperature residuals may be 
approximated by 

T,(t) - Y,(t) = CJ (16b) 

where 0 is the standard deviation of the measure- 
ments, which is assumed to be a constant. Substituting 
equation (16b) into equation (6) the following 
expression is obtained for stopping criteria E : 

E = Ma2 t,. (16~) 

5. COMPUTATIONAL PROCEDURE 

The computational procedure for the solution of 
this inverse problem using conjugate gradient method 
may be summarized as follows : 

SupposeP”(x, t) is available at iteration n. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 

Step 8. 

Solve the direct problem given by equation 
(1) for T(x,Y, 0. 
Examine the stopping criterion given by equa- 
tion (16a) with E given by equation (16~). 
Continue if not satisfied. 
Solve the adjoint problem given by equation 
(13) for 1(x, y, t). 
Compute the gradient of the functional J’ 
from equation ( 15). 
Compute the conjugate coefficient y” and 
direction of descent P from equations (7~) 
and (7b), respectively. 
Set Af(x, t) = - F(x, t), and solve the sensi- 
tivity problem given by equation (8) for 
AThy, t). 
Compute the search step size p” from equation 

(10). 
Compute the new estimation for f+ ’ (x, t) 
from equation (7a) and return to step 1. 

6. RESULTS AND DISCUSSIONS 

To illustrate the validity of the present inverse mov- 
ing boundary algorithm in identifying irregular 
boundary configuration f(x, t) from the knowledge 
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of spatial and temporal temperature recordings, we 
consider two specific examples where the boundary 
geometry at y = f(x, t) is assumed as a sinusoidal func- 
tion and a step function, respectively. 

The objective is to show the accuracy of the present 
approach in estimating f(x, t) with no prior infor- 
mation on the functional form of the unknown quan- 
tities, which is the so-called function estimation. 
Moreover, it can be shown numerically that the num- 
ber of sensors can be reduced when the conjugate 
gradient method is applied. 

In order to compare the results for situations involv- 
ing random measurement errors, we assume normally 
distributed uncorrelated errors with zero mean and 
constant standard deviation. The simulated inexact 
measurement data Y can be expressed as 

Y = Y,,,,, + OU (17) 

where Y,,,,, is the solution of the direct problem with 
an exact f(x, t) ; CT is the standard deviation of the 
measurements; and w is a random variable that was 
generated by subroutine DRNNOR of the IMSL [13] 
and will be within -2.576 to 2.576 for a 99% con- 
fidence bounds. 

In all the test cases considered here, we have chosen 
L = 10, T, = 0, T, = 100, K = 1, qo/k = 100, t, = 18, 
At = 1 and 20 constant elements are used on both 
upper and lower boundaries, while three linear 
elements are adopted for right and left boundaries. 
The sensor’s locations are always along y = 0, i.e. on 
the lower boundary. 

We now present below the numerical experiments 
in determining,f(x, t) by the inverse analysis : 

6.1. Numerical test case 1 
The unknown boundary configuration at y =,f(x, t) 

is assumed to vary with x and t as : 

y(x,t) = 1.5-0.04t+(O.l6t)sin F ; 
0 

ogt<5 

y(x,t) = 1.86-O.O4t-(O.l6t-1.44)sin 7 ; 
0 

5gt<14 

y(x, t) = 2.22-0.04t+(O.l6t-2.88) sin y ; 
0 

14 < t < 18 (18) 

the exact plot for the boundary configuration is shown 
in Fig. 2. 

The inverse analysis is first performed by using 20 
thermocouple measurements (referring to Fig. 1 where 
the triangle n denotes the sensor’s location) with 
thermocouple spacing Ax = 0.5. When assuming 
exact measurements (0 = O.O), and using good initial 
guess f” = 1.5 (the word ‘good’ means the boundary 
configurations at initial and final time are the same as 
the initial guess values) the estimated function of 
f(x, t) by using the CGM is shown in Fig. 3. It can be 

seen from Figs. 2 and 3 that the CGM obtained good 
estimation off(x, t). 

The average relative error between exact and esti- 
mated values after 20 iterations is 1.11% for the 
present case and the average relative error is defined 
as 

+ [(I) x (J+ l)] x 100% (19) 

here I and (J+ 1) represents the total discrete number 
of unknown parameters and time, respectively, while 
f and f denote the exact and estimated values of 
boundary configuration. This shows that when an 
accurate initial guess f” is provided, the validity of the 
CGM is thus proved. 

Next, let us discuss what will happen when the 
initial guess f”) deviates from the exact solutions at 
the initial and final time step. The computational situ- 
ations are the same as before except that the initial 
guess is now chosen as f” = 2.0. The average relative 
error of the inverse solutions after 20 iterations is 
3.89%. It is clear that the estimated f(x, t) is still 
reliable except for the values near t = t, and tJ where 
the estimated values of the boundary shape remains 
the same as the initial guess values f(x, to) =,f(x, tJ) = 

2.0. The reason for this singularity is stated previously 
and not repeated here. 

However, if the artificial gradients at t = to and tJ 
are determined from equations (15b) and (15c), the 
singularity which occurs at t = to and t, can be 
improved significantly. The results obtained by using 
equations (15b) and (15~) at t = t,, and tJ is shown in 
Fig. 4, the average relative error between exact and 
estimated values after 20 iterations is now 2.53%. It 
is evident that the error can be reduced by the appli- 
cation of equations (15b) and (15~). 

The above test cases seem unrealistic, since too 
many sensors were used in the numerical experiments. 
Now the question arises, can the number of sensors 
be reduced with the present approach? Let us first take 
a look at the role of measured temperature played 
in CGM. The measurement temperatures at sensor 
locations represent a boundary point heat flux that 
appeared in the adjoint equations (13). Therefore it is 
possible to reduce the number of boundary point heat 
fluxes even though it will influence the value of .I’. 
Now the question is that will this strategy influence 
the accuracy of the inverse solutions? To answer this, 
the numerical experiment is proceeded to the next case 
by utilizing f” = 2.0 and M = 10 (as was shown in 
Fig. 1), in estimating f(x, t) with measurement error 
0 = 0.0. The inverse solutions in predicting f(x, t) 
under such an assumption using the CGM is shown 
in Fig. 5. The average relative error between exact and 
estimated values after 20 iterations is 3.55%. 

From the comparison of numerical data in Figs. 4 
and 5, it is seen that the inverse solutions in predicting 
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Fig. 2. Exact plot for the moving boundary configurationsfx, t) for case 1. 

Fig. 3. Inverse solution off(x, t) by using f” = 1.5, (r = 0.0 and M = 20. 

1713 

Fig. 4. Inverse solution off(x, t) by using f” = 2.0, CJ = 0.0, M = 20 and artificial gradient at t = to and t,. 
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Fig. 5. Inverse solution off’x, 1) by using f” = 2.0, 0 = 0.0, M = 10 and artificial gradient at t = t, and tF. 

f(x, t) with 20 sensors are slightly better than that with 
10 sensors. However, the latter case is already good 
enough to be accepted as the inverse solution. Thus 
the number of sensors can be reduced when the CGM 
is applied. The following examples use M = 10 and 
the artificial gradients at t = to and tp 

The above numerical experiments were concerned 
with exact measurements, however measurement 
errors will always be introduced in any real measure- 
ment. It is important to detect the influence of the 
measurement errors to the inverse solutions under the 
present algorithm. 

y = 1.5+0.2t; O<x<t; O<t<6 

y=1.5-0.05t; t<x<lO; O<t<6 

y = 3.5-0.2t; O<x<t; 6<t<ll 

y= l.Of0.05t; t<x< 10; 6<t< 11 

y= 1.5-O.O5(t-10); 0 <x < lo-1.25(t-10); 

11 <t< 15 

y = 1.5+0.l(t-10); IO-1.25(t-10) <x < 10; 

11 <t< 15 

y = 1.1+0.05(t-10); 0 d < lo-1.25(t-10); 
Two different noises are introduced here. For the 

first one we assumed that the error in the order of 
about 3% maximum measured temperature is intro- 
duced according to equation (17), i.e. the dimen- 
sionless measured temperatures with errors CT = 3.0 
are considered (since the absolute maximum measured 
temperature is about 100). Next, measurement error 
with e = 5.0 is used. The inverse solutions using these 
inexact measurements as the simulated temperature 
measurements are shown in Figs. 6 and 7. 

15<t< 18 

y = 2.3-O.l(t-10); lo- 1.25(t- 10) < x < 10; 

15 d t < 18 (20) 

and the exact plot for the boundary configuration is 
shown in Fig. 9. 

By using these 3 and 5% errors, the resultant aver- 
age error of the inverse solutions is about 4.53 and 
5.26%, respectively. This implies that the CGM is not 
sensitive to the measurement errors since the measure- 
ment errors did not amplify the errors of estimated 
boundary shape (the errors are of same order of mag- 
nitude). Therefore the present technique provides a 
good estimation. 

The inverse analysis is first performed by using 20 
thermocouple measurements. With g = 0.0 and using 
good initial guess f” = 1.5, the estimated function of 
f(x, t) is shown in Fig. 10. The average relative error 
between exact and estimated values after 20 iterations 
is 2.25% for the present case. It can be seen from Figs. 
9 and 10 that the CGM obtained good estimation of 

f(x, t). 

In order to show the estimated inverse solutions 
more clearly, Fig. 8 shows the estimated ,f(x, t) 
obtained from Figs. 3 and 7 at time t = 4 and 12, 
respectively. 

Next we assumed that the error in the order of about 
3% maximum measured temperature is introduced 
according to equation (17), i.e. the dimensionless mea- 
sured temperatures with errors CJ = 3.0 are considered 
(since the absolute maximum measured temperature 
is about 100). The inverse solution using this inexact 
measurement as the simulated temperature measure- 
ments is shown in Fig. 11. 

6.2. Numerical test case 2 By using this 3% error, the resultant average error 
The unknown boundary configuration at y = f(x, t) of the inverse solution is about 4.73%. In order to 

is assumed to vary with x and t as : show the estimated inverse solutions more clearly, we 
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Fig. 6. Inverse solution off(x, t) by using f” = 2.0, LT = 3.0, M = 10 and artificial gradient at t = to and t, 

Fig. 7. Inverse solution off(x, t) by using f” = 2.0, 0 = 5.0, M = 10 and artificial gradient at t = f,, and t,. 

plot Fig. 12 which is the estimated f(x, t) obtained 
from Figs. 10 and 11 at time t = 5 and 14, respectively. 

From above numerical test cases for the present 
transient inverse geometry problem it is concluded 
that the advantages of using the CGM in estimating 
unknown boundary configurations are : (i) the inverse 
solutions does not exhibit stability (regularity) loss 
when increasing the measurement errors and (ii) the 
number of sensor can be reduced without appreciably 
affecting to accuracy of the accurate inverse solutions. 

7. CONCLUSIONS 

The Conjugate Gradient Method (CGM) along 
with the Boundary Element Method (BEM) was 

successfully applied for the solution of the inverse 
moving boundary problem to determine the un- 
known transient irregular boundary configuration by 
utilizing temperature readings. Several test cases 
involving different measurement errors were 
considered. The results show that the inverse solution 
obtained by CGM remain stable and regular as the 
measurement errors are increased and the number of 
sensors can be reduced while accurate boundary 
shapes can still be obtained when performing the 
inverse calculations. 
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Fig. 8. Comparison of exact and inverse solutions of& t) at t = 4 and 12 by extracting data from Figs. 3 
and 7. 

Exact 

Fig. 9. Exact plot for the moving boundary configurationsf(x, t) for case 2. 

Fig. 10. Inverse solution off(x, t) by using f” = 1.5, 0 = 0.0 and M = 20. 
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Fig. 11. Inverse solution of f(x, t) by using f” = 2.0, 0 = 3.0, M = 10 and artificial gradient at t = t, 
and tF. 
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C.G.M(kl4. obtained from Fig. 11) 
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Fig. 12. Comparison of exact and inverse solutions off(x, t) at t = 5 and 14 by extracting data from Figs. 

10 and 11. 
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